Question

In the figure shown, S is a monochromatic point source emitting light of wavelength λ = 500 nm. A thin lens of circular shape of focal length 0.10m is cut into two identical halves L₁

and L₂ by a plane passing through a diameter. The two halves are placed symmetrically about the central axis SO with a gap of 0.5 mm. The distance

along the axis from S to L_1 and L_2 is

0.15 m, while that from L₁ and L₂ to O is 1.30 m. The screen at O is normal to SO. If the third intensity maximum occurs at point A on the screen, find distance OA in mm.

Solution

Correct option is A)

Here,

 Δ So, O₂ and Δ S S₁ S₂ are similar

Also the placement of O₁ and O₂ are symmetrical to S

$$\therefore \frac{S_1 S_2}{O_1 O_2} = \frac{u + v}{u}$$

$$\Rightarrow S - 1 S_2 = \frac{(u + v)}{u} \times (O_1 O_2) =$$

$$\left(\frac{0.15 + 0.3}{0.15}\right) \times 0.5 \times 10^{-3}$$

$$\Rightarrow S_1 S_2 = 1.5 \times 10^{-3} m$$

d = distance between two slits. Now,

B = fringe width =
$$\frac{AD}{d}$$

B = $\frac{500 \times 10^{-9} \times 1}{1.5 \times 10^{-3}} = \frac{1}{3} \times 10^{-3}$
OA = 3B = $3 \times \frac{1}{3} = 10^{-3}$ m = 1 mm
option A